What is G.hn?


The major motivation for wired home networking technologies was IPTV, especially when offered by a service provider as part of a triple play service, voice and data service offering such as AT&T’s U-Verse.Smart Grid applications like home automation or demand side management can also be targeted by G.hn-compliant devices that implement low-complexity profiles.


In many customers’ homes the residential gateway that provides Internet access is not located close to the IPTV set-top box. This scenario becomes very common as service providers start to offer service packages with multiple set-top boxes per subscriber.

G.hn can connect the residential gateway to one or more set-top boxes, by using the existing home wiring. Using G.hn, IPTV service providers do not need to install new Ethernet wires, or 802.11 wireless networks. Because G.hn supports any kind of home wiring, end users might install the IPTV home network by themselves, thus reducing the cost to the service provider.

Home networks

Although Wi-Fi technology is popular for consumer home networks, G.hn is also intended for use in this application. G.hn is an adequate solution for consumers in situations in which using wireless is not needed (for example, to connect a stationary device like a TV or a network-attached storage device), or is not desired (due to security concerns) or is not feasible (for example, due to limited range of wireless signals).

Consumer electronic

Consumer electronics (CE) products can support Internet connectivity using technologies such as Wi-Fi, Bluetooth or Ethernet. Many products not traditionally associated with computer use (such as TVs or Hi-Fi equipment) provide options to connect to the Internet or to a computer using a home network to provide access to digital content.

G.hn is intended to provide high-speed connectivity to CE products capable of displaying high definition television.

Integrating the power connection and the data connection provides potential energy savings in CE devices. Given that CE devices (such as home theater receivers) very often run on standby or “vampire power”, they represent major savings to homeowners if their power connection is also their data connection – the device could reliably be turned off when it is not displaying any source.

Smart grid

Because G.hn can operate over wires including AC and DC power lines, it can provide the communication infrastructure required for smart grid applications. A comprehensive smart grid system requires reaching into every AC outlet in a home or building so that all devices can participate in energy conserving strategies.

On September 2009, the US National Institute of Standards and Technology included G.hn as one of its standards for the smart grid “for which it believed there was strong stakeholder consensus”, as part of an early draft of the “NIST Framework and Roadmap for Smart Grid Interoperability Standards”. In January 2010 G.hn was removed from the final version of the “Standards Identified for Implementation”.

The broad concept of a smart grid includes applications with overlapping scopes such as demand side management, energy conservation measures, Advanced Metering Infrastructure (AMI) and home networks.

Because G.hn supports popular protocols like IPv4 and IPv6, G.hn-based networks can easily be integrated with IP-based networks. Well-known network management protocols like the Simple Network Management Protocol (SNMP) can manage IP networks including G.hn devices.